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Magnetic fields and Brownian motion on the 2-sphere 

Michel Antoinet, Alain Comteti, Jean Desbois and Stephane OuvryS 
Division de  Physique Theariqueg, lnstitut de  Physique Nucldaire, F-91406, Orsay Cedex, 
France 

Received 2 January 1991 

Abstract. Usingconstrained path integrals, we study somestatistical properties of Brownian 
paths on the two-dimensional sphere. A generalized Levy law for the probability B ( A )  
that a closed Brownian path encloses an algebraic area A is obtained. Distributions of 
scaled variables related to the winding of paths around some fixed point are recovered in 
the asymptotic regime t+m. 

The study of the rotational Brownian motion goes back originally to the works of 
Perrin [ l ]  and Ltvy [Z]. It gave birth to the study of stochastic processes over Lie 
groups which now stands as an autonomous branch of stochastic processes [3]. An 
interesting physical realization which can be cast in this framework is the motion of 
a spin in a random magnetic field [4]. The work presented here is a continuation of 
a recent work [SI in which some properties of the winding of the planar Brownian 
motion were studied. Following Edward's observation [ 6 ] ,  one can describe a con- 
strained Brownian process, in the path integral framework, in terms of spectral proper- 
ties of snme Hamiltonians coupled to magnetic fields [7]. Path integral techniques also 
permit one to access other quantities, like e.g. the area between a Brownian path and 
its subtending chord [SI. Similar methods have been recently used in the literature, 
especially in the study of localization of the interface line in the 213 king model [9]. 

In this paper, we are concerned with diffusion processes on the sphere. We determine 
the probability distribution ??(A) of the area A enclosed by a closed Brownian path 
that winds on the sphere, thus providing a generalization of Levy's formula [ 101. The 
method we use also allows us to reach some limiting laws, and, especially, the law 
that gives the asymptotic behaviour of a Brownian path which winds around the pole's 
axis. If +(r) stands for a continuous determination of the azimuthal angle that the 
particle has wound at time 1, one can show, for f + m, that the scaled variable $( f ) / t  
is distributed according to a Cauchy law. Although this result was already known in 
the mathematical literature [ll], we believe that it is interesting to provide a heuristic 
derivation. Indeed, our approach shows in a very clear way the relation between the 
existence of a scaling variable, in  the long time asymptotic regime, and the spectral 
properties at low energy of some quantum mechanical Schrodinger operators. A more 
systematic study of this relationship will be presented elsewhere [12]. 
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Let us consider the two-dimensional sphere S 2  of radius R as an embedded manifold 
in RI. If n is an outward unit vector perpendicular to the sphere S*= ( r / l r l =  R } ,  one 
can define on  the punctured sphere S2\{P} the vector field 

n n r  
r ( r + r .  n) 

V. ( r )=  R’ 

P being the point such that r = -Rn. Then, with every oriented, closed path (L) such 
that P E  !L)j one can associate a rea! ngmher .An(L) given by the !ice Integra! 

For n, n‘ being two arbitrary directions, one has 

A.( L )  -A.,( L )  = 47rR2k k E Z. 

We will interpret the quantity defined by (2) as the algebraic area enclosed by the path 
( L ) .  The freedom of choice of the vector n imposes that this quantity is only defined 
modulo the total area of S’. This is a consequence of topological obstructions which 
do  not allow one to define a 1-form A such that OJ,,~, = dA on Sz. In the following we 
will choose a determination of the area such that -27rR2< A < 27rR2. 

The path functional 

F [ ( L ) ] =  Z: 8 ( A . ( L ) - A f 4 7 r R 2 k )  ( 4 )  
k t Z  

gives zero weight to all the paths ( L )  which do  not enclose a given algebraic area A.  
Then, the number of configurations of area A (mod 4?iR2) is obtained by constraining 
the Wiener measure over Brownian paths by the functional ( 4 ) .  For a closed path 
{r(T)/TE[O, t]; r,= r ( O ) = r ( t ) }  travelled in time 1, this number of configurations is 
given by 

We have chosen units for which the diffusion constant D = 1. N is a normalization 
factor. From this expression, an application of the Poisson sum formula leads to 

The Lagrangian L =  r 2 / 2 - i A ( r )  . r describes the dynamics on S2\{P} of a particle of 
unit mass and unit electric charge. It is coupled to the vector potential 

k n n r  
2 r ( r + r . n )  

A ( r ) = -  (7) 

of a magnetic monopole of magnetic charge k / 2  lying at the centre of the punctured 
sphere. We shall forget the unphysical singularity at P and consider that this object 
generates on S2 a uniform magnetic field, because our convention for the algebraic 
area implies that Dirac’s quantization condition holds [13]. 

In order to evaluate the total number of configurations $ ( A )  of a given algebraic 
area A, one has to integrate (6) with .the natural Riemannian measure on S’ over all 
possible initial points. One gets that 
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where Z, = Tr e-'Hk is the partition function of a charged particle in the field of a 
magnetic monopole of strength k / 2 .  The corresponding quantum mechanical rotational 
levels, obtained by Tamm in 1931 [14], 

1)+ n ( n +  1) ] n e N  (9 )  

have a degeneracy dk=lkI+Zn+l .  Therefore, the probability 9 ( A )  that a closed 
Brownian paiii endoses an algebraic area A reads as a discrete Fourier series 

Here, the partition function Z, is 

With the help of the expansion [15] 

Tr2 1 ( 2 n +  
8 coshZ(m/2) = .f, [ ( 2 n  + 1)2+x2]2 (12) - 

an elementary calculation shows that, in the flat space limit 1/R2-t0,  this probability 
behaves like 

71 1 
21 cosh2(7iA/1) 

B(A)-- 

Thus, we recover the L6vy's formula for the usual flat Euclidean plane [lo]. 
Equivaieniiy, ihis can be inierpreied by saying that for very short time, r + i j ,  the 
Brownian particle only explores a small part of the sphere. Therefore, it does not feel 
the curvature for fixed A<< R2. This means that the short-time behaviour of Brownian 
diffusion is essentially independent of the metric properties as long as one considers 
smooth manifolds. For instance, one can consider the non compact hyperbolic plane 
of constant negative curvature -1/R2. With the results of [16] for the heat kernel of 
LUG bayracc-osrrrarrrr uy=:rarvr rrrrirrirrarty ~ u u y ~ u  LV d uiii ivii i i  ~iragncuc u c u ,  ii is 
easy to show along the same lines that LCvy's flat space limiting law for B(A) is again 
recovered. 

On the contrary, one can expect that at the large times, the diffusion process will 
be mainly influenced by topological and/or metric properties of the space. For instance, 
on a smooth compact 2~ manifold like S2,  there will exist an asymptotic equilibrium 
distribution of the diffusion equation aP/at  - A P  = 0, namely the constant distribution, 
equal to the inverse of the total volume of the manifold [see 171. On the other hand, 
free Brownian motion on a non-compact manifold of infinite volume will certainly be 
dominated by metric effects as I + m. In the second part of this paper, we therefore 
concentrate on this limit of the Brownian motion. More specifically, we shall be 
interested in the asymptotic behaviour of the azimuthal angle made by the particle 
with respect to the S2-poles axis; and the equivalent problem on the infinite flat spacct, 

.L̂  1 ^-I^^^ 0 - 8  I_,._: _ : ^ : _ " I , _ _  ~ 1-2 1- " .. ..:L.- -~ ---. :- C ^ l >  ' . 

t Note that the related question far the hyperbolic plane is not really pertinent since it  is known that, 
asymptotically, the non-recurrent Brownian motion almost surely keeps a fixed direction (in polar coordinates 
with respect to the origin) [18]. Intuitively, winding around Same fixed point demands significant recurrence 
of the Brownian motion. 
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First, in order to define in a non-ambiguous way the total angle @ ( I ) ,  one must 
twice puncture the sphere, e.g. one considers the sphere with the two poles omitted, 
This turns S2 topologically into a cylinder, which has the same homotopy group as 
the circle S'. Using the usual spherical coordinates 0, @ on this punctured sphere, the 
functional 

a [ @ - \ : d ~ d ~ ) ]  (14) 

enables one to restrict the paths to those which start from ro at time zero and end at 
r a t  time 1. The total azimuthal angle $ ( I )  swept out around the polar axis is restricted 
to be $. Inserting this constraint into the Wiener integral representation of the process 
on S2, one is formally led to the quantum dynamics of a charged particle in the 
magnetic field of a vortex. This is described by the Hamiltonian (Laplace-Beltrami 
operator on S 2  minimally coupled to the vortex field) 

fi = 2R' [ 1 sin 0 a a 0  (sin 0;)  +A ($+ i A )  '1. 
An elementary calculation gives the characteristic function 

E(eiAmi')1 io) 

in terms of the spectrum of the Hamiltonian which is defined by 

fi$"(r, A ) =  &(A)h(r ,  A ) .  

One gets that 

Here, n is a generic set of indices labelling the eigenstates. As previously discussed, 
the existence and form of the long-time behaviour will be strongly influenced by the 
properties of the manifold. The above formula clearly shows that the long-time limit 
is intimately related to the bottom of the quantum spectrum. More precisely, a scaled 
variable $ ( t ) / f ( t )  is going to exist if 

1 (19) 

is independent of 1. As we shall see, this property depends in a crucial way on the 
limiting behaviour of the energy levels as the vortex strength A goes to zero. In order 
that the integral (18) does not vanish for large time, one must have that the 

lim ~ ( ~ W i r J / r i ! )  
I-m 

lim fEn(A/f(f)) (20 )  
I - _  

is independent of I. 

by two quantum numbers m, k [I91 
For the sphere S2,  the spectrum of the charged particle in the vortex field is labelled 

$m.x(r, A )  = C , ~ , , ( A ) P ~ ~ Y ~ $ \ I ( C O ~  0) e"' 

€,,,(A) = y [ k + l m + A l l [ k + l m + A l +  11. 

( 2 1 0 )  

(216) 
1 

2 R  
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The integration over the final point r selects the states with m =O.  In the asymptotic 
limit, the dominant contribution to the integral (18) comes from the ground state, 
k =O. (Eo,o(A)=~A~(~A~+ 1)/2R2.) Condition (20) determines thescaled variable +(t)/t. 
The characteristic function is, then, asymptotically given by 

..,-L- ..-... ---....... L . c . . . A . - . A A , - .  .-...~ ~ ~ - l ~ ~ ~ L . l I 1  
~c iiavc LIIKCII i i i w  aGcvuni me L ~ C L  inai m e  grounu scare 01 me penuroeu namiiwIiidii 
HA becomes constant as A +O. By an inverse Fourier transform, we find that the scaled 
variable 4(t)/f  is distributed according to a Cauchy law, i.e. 

1 2 R 2 d x  
P ( x = + ( t ) / t ) d x  - 

r - m r  1+4R4x2' 

in  conirasi wirhihe previous iormuia for P(A)  ( inj ,  here one does nor recover Spiizci's 
law for planar winding [20] when R2+Co. According to the heuristic discussion on 
limiting behaviour of diffusion processes, this is not surprising. The topology of the 
compact sphere is very different from that of the plane. One has to consider a discrete 
spectrum of bound states in the former case, as opposed to a continuum of scattering 
states in the latter case. 

Thus, in order to perform a similar analysis on the Euclidean plane, the formalism 
must be generalized to include continuum states. We start by using polar coordinates 
on the plane. A vortex of strength A is localized at the origin. The corresponding 
quantum Hamiltonian 

possesses a continuous spectrum on the positive real axis. The characteristic function 
can therefore be written in terms of Bessel's function $*(z)  as 

E(e'"""Ir,)= I o m d r r  ~ ~ m d k k $ l ~ l ( k r ) ~ l , l ( k r o )  e - z h 2 / 2  

The long-time limit is now governed by the behaviour of the wavefunction at the origin. 
From the behaviour of the Bessel function as A +  0 and kr,/&+O, one recovers the 
scaled variable +(f)/log t [21] and the probability distribution associated with it. 

(26) 

It follows that x = 2 4 (  t)/log f is distributed according to a Cauchy law. This is Spitzer's 
[20] original result 

iim ~(~'A+(?l/ lWr) ,e-/*1/2, 

t-m 

1 dx 
7T 1+x* '  

P(x) d x =  - - 

In summary, our analysis has emphasized the formal link between stochastic processes 
and quantum mechanics. We have given a simple derivation of limiting laws for free 
Brownian motions on two-dimensional manifolds by using Wiener path integrals and 
the spectral properties of Laplace-Beltrami operators coupled to magnetic fields. The 



2586 M Antoine et al 

limiting behaviour obtained in the case of the sphere, and more generally in the case 
of any compact two-dimensional manifold, is, in fact, independent of the precise 
structure of the wavefunctions. The asymptotic limit 1 +a is entirely controlled by the 
low energy behaviour of the ground state energy E ( A ) ,  i.e. A + O .  The latter quantity 
can be found perturbatively. The singularity of the perturbation expansion is reflected 
by the non-analytic behaviour of E ( A )  in the coupling constant A2. These features are 
quite general. In the case of processes with drift [12] they allow one to recover the 
LCvy stable laws as limiting laws. 

Acknowledgments 

We would like to thank J P Bouchaud and J Lajczerowicz for interesting discussions. 

References 

[ I ]  Perrin F 1928 Ann. Sci. Ec. Norm. Sup. 45 1 
[2]  Levy P 1939 Bull. Soc. Math. France 67 1 
[3] Albeveria S, Arede T and Haba 2 1990 J. Math. Phys. 31 278 
[4] Itzykson C 1974 Commun. Math. Phys. 36 19 
[ 5 ]  Comtet A, Desbois J and Vuvry S 1990 J.  Phys. A: Math. Gen. 23 3563 

[6] Edwards S F 1967 Proc. Phys. Soc. 91 513 
[7] Khandekar D C and Wiegel F W 1988 I Phyr. A: Math. Gen. 21 56 

Brereton M G and Butler C 1987 J.  Phyr A: Moth. Gen. 20 3955 
[ S I  Duplantier B 1989 J,  Phys. A: Moth. Gen. 22 3033. 
[9] Vallade M and Lajcrerowicz J 1981 J.  Physique 42 1505 

S Vuvry, Proc. 4th Workshop on Theoretical Physics, March 1990 Nuel. Phyr. Roc. Suppl. I8 250 

[ I O ]  Ltvy P 1965 Processus Stochnstiques el Mouvemenr Brownien (Paris: Gauthier-Villars) 
[ I l l  Le Gall J F and Yor M 1986 Prob. Theor, Ref .  Fields 71 183 
[ I21  Comtet A and Desbois J forthcoming paper 
1131 Dirac P A  M 1931 Proc. R. Soc. A 133 60 . _  
[ I 41  Tamm I 1 9 3 1  Z. Phys. 71 141 
1151 Gradshtevn I S and Rvrhik I M 1980 Tobles of Integrals, Series ond Products (New York: Academic) . .  . .  
[ I 61  Comtet A and Houston J P 1985 J.  Math. Phys. 26 185 
[I71 Chavel I 1984 Eigenualues in Riemannian Geometry (New York: Academic) 
[ IS]  Praf J J I971 C R Acad. Sci. Poris A 272 1586 
[I91 Kretschmar M 1984 Z. Phys. 185 73 
[ZO] Spitzer F 1958 Trans. Am. Moth. Soc. 87 187 

[21] It6 K and McKean H P 1965 Diflision Prorerser and Their Somple Poths (Berlin: Springer) 
Desbois J 1990 J.  P h p .  A: Moth. Gen. 23 3099 


